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EXECUTIVE SUMMARY 

Problem Area 

An objective of the tǊƻƧŜŎǘ tт άaƛǘƛƎŀǘƛƴƎ ǘƘŜ Ǌƛǎƪ ƻŦ ŦƛǊŜΣ ǎƳƻƪŜ ŀƴŘ ŦǳƳŜǎέ ƻŦ CǳǘǳǊŜ {ƪȅ {ŀŦŜǘȅ (FSS) is 

to support increasing safety - meaning here reducing the number of casualties - with respect to fire 

related issues (in-flight or post-crash). First, many studies on the current flights show that about 50% of 

the casualties in case of aircraft accidents are linked to situations where fire is involved. Hundreds of 

casualties could be saved per year if fire effects on the primary structure or in the cabin environment 

were mitigated. Second, the development of larger, more electric and more lightweight aircraft (with an 

increase use of Carbon Fibre Reinforced Plastics (CFRP) composite parts in aircraft design, such as fuselage 

panels, engine carters, engine exhausts,Χ etc) raises several safety questions with respect to unknown 

behaviours of the materials and structures when exposed to fire. But the scope of this problem is large, 

embracing a variety of problems and solutions: the use of fireproof and less toxic materials, the early 

detection of fire, the simulation ƻŦ ǇŀǎǎŜƴƎŜǊǎΩ ŜǾŀŎǳŀǘƛƻƴΣΧ etc. In the FSS research programme, it was 

decided to address the fire issue as part of Theme 4Υ ά.ǳƛƭŘƛƴƎ ǘƘŜ ¦ƭǘǊŀ-ǊŜǎƛƭƛŜƴǘ ±ŜƘƛŎƭŜǎέΦ Lǘ ƳŜŀƴǎ ǘƘŀǘ 

the research work is focused on material and structural questions, and aims at mitigating fire related 

safety risks when/by introducing new generation of materials in future aircraft design (incl. possible eco-

friendly ones). Considering this focus, it must be noticed that very few test results are available today to 

the research community, because of evident costs (test facilities, destructive tests, specimens and 

sensors) and industry confidentiality reasons. A large part of the project P7 ς to which this deliverable 

relates - is dedicated to develop and share experimental testing facilities and test results, with a clear 

partnership added value between EU Research Establishments, Academia and Industry being reached. 

For new aircraft concepts, the application of CFRP is considered in the primary structure of the wing and 

the fuselage. Such airplane exhibits novel or unusual design features leading to a gap with the technology 

envisioned in the airworthiness standards dedicated to transport category airplanes.  A specific concern is 

for safety issue pertaining to aircraft passengers with respect to crashworthiness and to fire behaviour of 

composite materials. Enhancing the understanding of aircraft fire performance guarantees aircraft 

occupants a significant safety increase to come out unharmed in case of fire incident or in crash situation. 

More particularly, occupant safety improvements with regard to evacuation when engine kerosene fire is 

developing outside will be linked to an enhancement of knowledge about the carbon epoxy materials 

behaviour and degradation under severe temperature conditions and fire exposure. In terms of fumes 

toxicity, self-estinguishibility and heat generation, the use of carbon epoxy composite materials for 

primary structures not only brings specific questions regarding the passengers safety, but also regarding 

the rescue team efficiency and safety. In terms of structures design, it is crucial to accurately understand 

and compare the safe, damaged (impact, crash) and decomposed (fire) materials performances, in terms 

of mechanical strength (load carrying) and fireproof-ness. 
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Description of Work 

¢ƘŜ ƻōƧŜŎǘƛǾŜ ƻŦ C{{ tт ǿƻǊƪ ǇŀŎƪŀƎŜ ²tтΦм ά¦ƴŘŜǊǎǘŀƴŘƛƴƎ ŀƴŘ ŎƘŀǊŀŎǘŜǊƛǎƛƴƎ ǘƘŜ ŦƛǊŜ ōŜƘŀǾƛƻǳǊ ƻŦ 

ǇǊƛƳŀǊȅ ǎǘǊǳŎǘǳǊŜ ŎƻƳǇƻǎƛǘŜ ƳŀǘŜǊƛŀƭǎ όŜǇƻȄȅ ǊŜǎƛƴǎΣ ǎǘŀƴŘŀǊŘ /Cwtύέ ƛǎ ǘƻ ŜƴƘŀƴŎŜ ƪƴƻǿƭŜŘƎŜ 

concerning the fire behaviour and performance of CFRP primary structure composite materials, in order to 

better predict safety and survivability issues in case of fire incident or post-crash situation. Such 

predictions rely on physical models and numerical tools which need to be developed based on exhaustive 

materials (characterisation) and components (validation) experimental testings. Moreover, WP7.1 

produces a comprehensive experimental database for a reference material to be shared by the European 

research community as a basis for material model development of the fire behaviour and degradation of 

CFRP materials. The T700GC/M21 material has been proposed to be used in this WP7.1 because a lot of 

published results already exist about its standard mechanical behaviour which the project can build on. 

For this purpose, existing testing protocols have to be adapted, improved or invented. FSS P7 deliverable 

5тΦм άtƭŀƴ ƻŦ 9ȄǇŜǊƛƳŜƴǘǎ ς Primary Structures Materials ς Final Requirements, Selection and 

{ǇŜŎƛŦƛŎŀǘƛƻƴ ƻŦ aŀǘŜǊƛŀƭǎ ŀƴŘ ¢Ŝǎǘǎέ [1] includes a list of complementary tests which could be developed 

and performed to complete an already existing database with respect to: 

¶ Mechanical and thermo-mechanical properties of virgin and charred material, 

¶ Dynamic degradation phenomena (incl. ignition of combustible gases inside the CFRP laminate) 

during the fire exposure time, 

¶ Fire resistance of damaged composite panels to direct exposure to flame impact. 

This report presents the test results from a second batch of T700/M21 tests. 

Results & Conclusions 

In the last past years, ONERA has developed a test facility to provide thermo-physical properties 

characterisation of anisotropic materials. Especially, it can assess simultaneously the specific heat and the 

3 main components of the thermal conductivity tensor as a function of temperature. It is based on 

thermographic measurements of the material thermal response subjected to a pure radiative laser 

heating. The test facility was carried out on the selected T700GC/M21 CFRP material that was studied in 2 

stacking sequences to identify properties at the virgin state (i.e. below glass transition and pyrolysis 

thresholds) and above. 

In precedent studies, the thermal decomposition of epoxy matrix reinforced by carbon fibre composite 

materials had been performed at ONERA. Three main chemical reactions had been identified: pyrolysis of 

the matrix, oxidation of the char produced by the pyrolysis of the matrix and oxidation of the fibres. To 

succeed in, Thermo Gravimetric Analysis (TGA) and Differential Scanning Calorimetry (DSC) experiments 

had been carried out in order to identify a thermal degradation model adapted to composite materials. In 

this deliverable, the complementary TGA results for the material manufactured and provided by CEiiA are 

under the scope. 
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Heating rates of TGA measurements have also been extended to reach thermal loads of the same order of 

magnitude than those experienced during a fire event. Kinetic modelling assessed at low heating rates is 

confronted to high heating rates measurements and shows a significant local thermal non-equilibrium 

that requires measurements to be analysed out of the conventional thermally thin assumption. 

Thermal properties of the CFRP had been assessed experimentally in the previous deliverable for the 

virgin state of the material onto a temperature range where any chemical reaction is avoided. 

Complementary TGA measurements have provided kinetic modelling for defining a preparation protocol 

to reach a fully charred (pyrolysed) state of the material. The protocol has been successfully carried out 

and thermal characterisations of the charred state have been performed and are presented in this 

deliverable. 

Laser induced decomposition has been developed at ONERA to analyse the thermal response of composite 

material subjected to a pure radiative heat load. Such original approach can provide relevant information 

about the material behaviour without any uncertainty regarding the heat flux distribution and its nature. 

Actually, a fire event induces a heat flux at the material surface the time and space distribution of which is 

very difficult to assess. Using a stable and coherent heat source provides a very accurate heat flux on the 

material surface so that the thermal response can be analysed confidently. The experimental facility 

offers also well controlled boundary conditions, non-intrusive and accurate temperature measurements 

and avoids any combustion of volatiles that can affect the material behaviour. Results are presented for 

different heat flux magnitudes and different laser exposure periods. 

Applicability 

The obtained test results are complementary to existing ones on T700GC/M21 which are available in the 

open literature. Once published in journal papers, they will permit code developers (academic) and users 

(industry) to: 

¶ get input data for numerical simulations, 

¶ address the question of the validity of the state-of-the-art models they apply (capability to 

reproduce the observed phenomena), 

¶ propose future developments where lacks are identified. 

Finally, the composite structures design capabilities could be improved either through increase of 

confidence in the existing tools, or thanks to new developments based on the so-gained knowledge. 
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1 INTRODUCTION 

1.1. The Programme 

IƻǊƛȊƻƴ нлнл ƛǎ ǘƘŜ ōƛƎƎŜǎǘ 9¦ wŜǎŜŀǊŎƘ ŀƴŘ LƴƴƻǾŀǘƛƻƴ ǇƭŀǘŦƻǊƳ ŜǾŜǊ ǿƛǘƘ ƴŜŀǊƭȅ ϵул ōƛƭƭƛƻƴ ƻŦ ŦǳƴŘƛng 

available over 7 years (2014 to 2020) ς in addition to the private investment that this money will attract. 

Within this frame, EREA, the association of European Research Establishments in Aeronautics has 

proposed Future Sky program: a Joint Research Initiative in which development and integration of aviation 

technologies is taken to the European level. Future Sky is based on the alignment of national institutional 

research for aviation by setting up joint research programs: the first one to be launched in 2015 was the 

Future Sky Safety programme (http://www.futuresky.eu/projects/safety), because safety is a transverse 

domain of common interest to all stakeholders and with reduced competitive aspects. Four themes and 

seven projects (5 have already started) were identified (Runway Excursions, Total System Risk 

Assessment, Human Performance Envelope, Organizational Accidents, and Fire Smoke and Fumes). The 

ǿƻǊƪ ǇǊŜǎŜƴǘŜŘ ƛƴ ǘƘƛǎ ŘƻŎǳƳŜƴǘ ōŜƭƻƴƎǎ ǘƻ ǘƘŜ tт ǇǊƻƧŜŎǘ άaƛǘƛƎŀǘƛƴƎ wƛǎƪǎ ƻŦ CƛǊŜΣ {ƳƻƪŜ ŀƴŘ CǳƳŜǎέΦ 

 

1.2. Project context 

¢ƘŜ ǊŜŀǎƻƴ ƻŦ ǘƘŜ άaƛǘƛƎŀǘƛƴƎ wƛǎƪǎ ƻŦ CƛǊŜΣ {ƳƻƪŜ ŀƴŘ CǳƳŜǎέ ǇǊƻƧŜŎǘ ǇǊƻǇƻǎŀƭ ŎŀƳŜ ŦǊƻƳ ǘƘŜ 

development of larger, more electric and more lightweight aircraft (with an increase use of CFRP 

composite parts in A/C design, such as fuselage panels, wings, engine carters, engine exhausts,Χ etc). 

Such airplane exhibits novel or unusual design features leading to a gap with the technology envisioned in 

the airworthiness standards dedicated to transport category airplanes, which also raises several safety 

questions with respect to unknown behaviors of the materials and structures. A specific concern is for 

safety issue pertaining to aircraft passengers with respect to crashworthiness and to fire behavior of 

composite aircraft structures. But the scope of this problem is large, embracing a variety of problems and 

solutions: the use of fireproof and less toxic materials, the early detection of fire, the simulation of 

ǇŀǎǎŜƴƎŜǊǎΩ ŜǾŀŎǳŀǘƛƻƴΣ ŜǘŎΦ !ƴŘ ŦŜǿ ǊŜǎŜŀǊŎƘŜǎ ƘŀǾŜ ōŜŜƴ ŦǳƴŘŜŘ ȅŜǘ ōȅ ǘƘŜ 9¦ ŎƻƳƳƛǎǎion on this 

subject. Iǘ ǿŀǎ ŘŜŎƛŘŜŘ ǘƻ ŀŘŘǊŜǎǎ ǘƘŜ ŦƛǊŜ ƛǎǎǳŜ ƛƴ ǘƘŜ C{{ ǊŜǎŜŀǊŎƘ ǇǊƻƎǊŀƳ ŀǎ ǇŀǊǘ ƻŦ ¢ƘŜƳŜ пΥ ά.ǳƛƭŘƛƴƎ 

the Ultra-ǊŜǎƛƭƛŜƴǘ ±ŜƘƛŎƭŜǎέΦ Lǘ ƳŜŀƴǎ ǘƘŀǘ ǘƘŜ ǊŜǎŜŀǊŎƘ ǿƻǊƪ ŦƻŎǳǎŜǎ ƻƴ ƳŀǘŜǊƛŀƭ ŀƴŘ ǎǘǊǳŎǘǳǊŀƭ 

questions, and aims at mitigating fire related safety risks when/by introducing new generation of 

materials in future aircraft design (incl. possible eco-friendly ones). 

Enhancing the understanding of aircraft fire performance guarantees aircraft occupants a significant 

safety increase to come out unharmed in case of fire incident or in crash situation. More particularly, 

occupant safety improvements with regard to evacuation when engine kerosene fire is developing outside 

will be linked to an enhancement of knowledge about the carbon epoxy materials behavior and 

degradation under severe temperature conditions and fire exposure. In terms of fumes toxicity, self-

extinguishibility, heat generation and degradation products under elevated temperature or fire exposure, 

the use of composite materials in cabin environment also brings specific questions regarding passengers 
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and crew safety. Beside of this some concerns also exist about the impact of various innovations on on-

board air quality. Multiple investigations have been carried out on hypothetical air contamination by oil 

ƛƴƎǊŜŘƛŜƴǘǎ ŀƴŘ ƻƴ ǘƘŜ ǇƻǘŜƴǘƛŀƭ ƛƳǇŀŎǘ ƻŦ ǎǳŎƘ ŎƻƴǘŀƳƛƴŀǘƛƻƴ ƻƴ ƻŎŎǳǇŀƴǘǎΩ ƘŜŀƭǘƘΣ ōƻǘƘ ƛƴ ǎƘƻǊǘ ǘŜǊƳ 

and in long term. The more general question of any possible kinds of impact on on-board air quality then 

raised, that can be due for instance to the introduction of new materials in the design that could react 

with more and more electrical heating or new engine systems.  

The objectives of the EU in terms of increasing air transport safety are reminded in the annual EASA Safety 

Plan. In this perspective, the P7 objective is to contribute to the reduction of the number of air transport 

casualties with respect to fire related issues (in-flight or post-crash). Indeed many studies show that about 

50% of the fatalities in case of aircraft accidents are linked to situations where fire is involved. Many 

casualties could be prevented per year if fire effects on the primary structure or in the cabin environment 

were mitigated.  

In this context, the mechanical behavior and decomposition of organic matrix and carbon fibres of 

composite materials at elevated temperature or under fire exposure have to be better known, for safety 

reasons and also health (onboard air quality) issues. Improved material solutions (for primary structures 

or cabin environment) should also be proposed when needed. 

¢ƘŜ tт ǇǊƻƧŜŎǘ άaƛǘƛƎŀǘŜ Ǌƛǎƪǎ ƻŦ ŦƛǊŜΣ ǎƳƻƪŜ ŀƴŘ ŦǳƳŜǎέ [2] addresses on the one hand effects of fire on 

materials (production of heat, toxic fumes and smokes), and on the other hand effects of fire on 

ǎǘǊǳŎǘǳǊŜǎ όōǳǊƴǘƘǊƻǳƎƘΣ ǎǘǊŜƴƎǘƘύ ǘƘŀǘ Ŏŀƴ ŜƴŘŀƴƎŜǊ ǘƘŜ ǇŀǎǎŜƴƎŜǊǎΩ ƭƛŦŜ ŘƛǊŜŎǘƭȅ όŜȄǇƻǎǳǊŜύ ƻǊ ƛƴŘƛǊŜŎǘƭȅ 

(evacuation). The scope of the works covers both primary structures materials (e.g. epoxy resin, carbon 

fiber reinforced polymers) and cabin materials (e.g. phenolic polymers, glass fiber reinforced plastics). The 

P7 project has been split into three work packages according to the expected impacts that were claimed 

for this 3 years research work: 

- WP7.1: the first work package aims at improving the knowledge about effects of fire on materials 

and structures. It would mainly concern standard epoxy resins and carbon fibers reinforced 

polymer materials (primary structures), 

- WP7.2: the second work package aims at proposing improved materials solutions, mainly to 

mitigate fire, smoke and fumes. It would concern new materials (primary structures and cabin), 

the properties of which will be compared to standard ones, 

- WP7.3: the third work package aims at analyzing possible effects on the on-board air quality that 

the introduction of such new materials in the aircraft structure and cabin could have. 

The FSS P7 project is led by ONERA, as its experience covers both Crash and Fire worthiness of A/C 

composite materials and structures. ONERA also leads the first work package which aims at better 

understanding and characterizing the fire and high temperature behavior of primary structure CFRP 

materials. DLR leads the second work package which is dedicated to the improvement of current material 

solutions to mitigate fire, smoke and fumes in the cabin environment. Last, NLR leads the third work 

package where objectives are to study the indirect effects of such new materials, technologies and fuel 
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systems on the on-board aircraft air quality. Bridges between the different tasks and partners are 

implemented by CEIIA (WP 7.1 and WP7.3), VZLU (WP7.2) and Cranfield University (WP7. 1 and WP7.3), 

and access to the industry is reached in all tasks thanks to the contribution of Airbus-military (AIRBUS 

D&S, WP7.1), ALENIA (WP7.2) and EMBRAER (WP7.1 and WP7.3) companies. The overall project 

consistency will be increased by CAA UK providing regulatory advice and guidance to all the project tasks. 

1.3. Research objectives 

¢ƘŜ ƻōƧŜŎǘƛǾŜ ƻŦ C{{ tт ǿƻǊƪ ǇŀŎƪŀƎŜ ²tтΦм ά¦ƴŘŜǊstanding and characterising the fire behaviour of 

ǇǊƛƳŀǊȅ ǎǘǊǳŎǘǳǊŜ ŎƻƳǇƻǎƛǘŜ ƳŀǘŜǊƛŀƭǎ όŜǇƻȄȅ ǊŜǎƛƴǎΣ ǎǘŀƴŘŀǊŘ /Cwtύέ ƛǎ ǘƻ ŜƴƘŀƴŎŜ ƪƴƻǿƭŜŘƎŜ 

concerning the fire behaviour and performance of CFRP primary structure composite materials, in order to 

better predict safety and survivability issues in case of fire incident or post-crash situation. Such 

predictions rely on physical models and numerical tools which need to be developed based on exhaustive 

materials (characterisation) and components (validation) experimental testing. The objective of WP7.1 is 

to produce a comprehensive experimental database for a reference material to be shared by the 

European research community as a basis for material model development of the fire behaviour and 

degradation of CFRP materials. The T700GC/M21 material has been proposed to be used in this WP7.1 

because a lot of published results already exist about its standard mechanical behaviour which the project 

can build on. 

Earlier work in FSS WP7.1 included a list of complementary tests which could be developed and 

performed to complete the already existing database with respect to: 

¶ Mechanical and thermo-mechanical properties of virgin and charred material, 

¶ Dynamic degradation phenomena (incl. ignition of combustible gases inside the CFRP laminate) 

during the fire exposure time, 

¶ Fire resistance of damaged composite panels to direct exposure to flame impact. 

This objective of this study is to present the test results from a second and complementary batch of 

T700GC/M21 tests. 

1.4. Approach 

The objective of WP7.1 is to enhance knowledge concerning the fire behavior and performance of CFRP 

primary structure composite materials, in order to better predict safety and survivability issues in case of 

fire incident or post-crash situation. Such predictions rely on physical models and numerical tools which 

need to be developed based on exhaustive materials (characterization) and components (validation) 

experimental testings. The objective of WP7.1 is also to produce a comprehensive experimental database 

for a reference material to be shared by the European research community as a basis for material model 

development of the fire behavior and degradation of CFRP materials. The T700GC/M21 material has been 

proposed to be used in this WP7.1 because a lot of published results already exist about its standard 

ƳŜŎƘŀƴƛŎŀƭ ōŜƘŀǾƛƻǊ ǿƘƛŎƘ ǘƘŜ ǇǊƻƧŜŎǘ Ŏŀƴ ōǳƛƭŘ ƻƴΦ tŀǊǘƴŜǊǎΩ ǎǘŀǘŜ-of-the-art models and simulation 
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tools will be assessed according to this comprehensive set of experimental data. FSS P7 WP7.1 was split 

into 3 tasks: 

- T7.1.1. Definition of tests, manufacturing of test coupons and panels, preparation of tests (incl. 

instrumentation), led by CEiiA (see deliverable FSS P7 D7.1) 

- T7.1.2. Test and model the thermo-chemical, thermo-physical and thermo-mechanical properties 

of composite materials according to temperature, fire exposure (time), and material state (virgin 

and charred), led by ONERA, 

- T7.1.3. Test and model resilience to temperature/fire effects at structural levels (incl. on 

damaged panels), led by CASA. 

¢ƘŜ ǇǊŜǎŜƴǘ C{{ tт 5тΦп ŘŜƭƛǾŜǊŀōƭŜ άtǊƛƳŀǊȅ ǎǘǊǳŎǘǳǊŜ ƳŀǘŜǊƛŀƭǎ ς Test results (second ōŀǘŎƘύέ ǊŜŦŜǊǎ ǘƻ 

task T7.1.2 of WP7.1. 

 

1.5. Structure of the document 

The introduction being done, the next sections of the document are sub-divided according to the 

following topics: 

- Kinetic properties characterising the decomposition reactions the material undergoes as a 

function of temperature, gas atmospheres, heating rates and the associated energies involved in 

each reaction; 

- Protocol definition for preparation and conditioning of homogeneously charred test specimens; 

- Thermo-physical properties (specific heat and thermal conductivity tensor) at the charred state 

and as a function of temperature; 

- Thermal behaviour under laser-induced decomposition. 

In precedent studies [5], the thermal degradation of epoxy matrix reinforced by carbon fibre composite 

materials had been performed at ONERA. During these studies, three main chemical reactions had been 

identified: pyrolysis of the matrix, oxidation of the char produced by the pyrolysis of the matrix and 

oxidation of the fibres. To succeed in, TGA and DSC experiments had been carried out in order to identify 

a thermal degradation model adapted to composite material. In this deliverable, complementary and 

exhaustive TGA results for the material manufactured and provided by CEiiA are presented. 

In the last past years, ONERA has developed a test facility to provide thermo-physical properties 

characterisation of anisotropic materials. Especially, it can assess simultaneously the specific heat and the 

3 main components of the thermal conductivity tensor as a function of temperature. It is based on 

thermographic measurements of the material thermal response subjected to a pure radiative laser 

heating. The test facility was carried out on the selected T700GC/M21 CFRP material studied considering 2 

stacking sequences (unidirectional and quasi-isotropic laminates). Properties have been identified at the 
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virgin state (i.e. below glass transition and pyrolysis) in the previous deliverable (D7.4 [10]). This second 

technical report is dedicated to the assessment of the properties of the charred state only. The 

preparation protocol to get the fully charred test specimen will be defined. 

The same experimental facility can also be used to analyse the thermal response during decomposition of 

charring materials subjected to the laser heating at high power. Dedicated but similar specimens are 

tested from the room temperature at the virgin state. Different heat flux magnitudes, exposure durations, 

stacking sequences are investigated in order to cover the whole behavioural range of the material 

subjected to significant heat loads. 

 

  



Project: 
Reference ID: 
Classification: 

Mitigating risks of fire, smoke and fumes 
FSS_P7_ONERA_D7.7 
Public 

  

 

ONERA Status: Approved Issue: 2.1 PAGE 25/198 
 
This document is the property of Future Sky Safety and shall not be distributed or reproduced without the formal approval of Coordinator NLR. 
CǳǘǳǊŜ {ƪȅ {ŀŦŜǘȅ Ƙŀǎ ǊŜŎŜƛǾŜŘ ŦǳƴŘƛƴƎ ŦǊƻƳ ǘƘŜ 9¦Ωǎ IƻǊƛȊƻƴ нлнл wŜǎŜŀǊŎƘ ŀƴŘ LƴƴƻǾŀǘƛƻƴ tǊƻƎǊŀƳƳŜΣ ǳƴŘŜǊ DǊŀƴǘ !ƎǊŜŜƳŜƴǘ bƻ. 640597. 
 

 

         

2 MATERIAL 

The study is focused on one material used in the aeronautical industry for primary and secondary aircraft 

structures. The T700GC/M21 is a composite laminate made of carbon fibres (T700GC by TORAY) and 

epoxy resin reinforced by thermoplastic nodules (M21 by HEXCEL). 

Plies of M21 / 35% / 268 / T700GC unidirectional, ςφπ Аά-thick, prepregs are stacked and cured to 

provide the different composite laminates studied hereafter. 

The material density is given at the virgin state: ” ρυψπ ὯὫȾά . 

Fibres average diameter is χ Аά and the volume fraction of fibres is πȢυφχ for the cured material. The final 

laminate thickness is about ςȢπψ ɀ ςȢρπ άά for 8 ply laminates and τȢρφ τȢςπ άά for 16 ply laminates. 

CEiiA was in charge of manufacturing T700GC/M21 plates for ONERA. They were provided to ONERA in 

December 2015. 
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3 THERMO-GRAVIMETRIC ANALYSIS 

3.1. Approach description and associated technical objectives 

TGA measurements correspond to the first test phase when investigating thermal behaviour and stability 

of composite materials. Such tests are performed at the condensed matter scale regarding few άὫ and 

άά of material. The objective is the assessment of physical quantities such as: 

¶ mass loss and mass loss rate as a function of temperature, atmosphere and heating rates; 

¶ number of decomposition reactions; 

¶ temperature onset; 

¶ residual mass; 

¶ reaction enthalpies (if combined with DSC). 

The analysis of the physical quantities measured with the device provides important information about: 

¶ thermo-chemical kinetics defining each reaction with Arrhenius equations and associated 

parameters; 

¶ thermally thin assumption validity with respect to the heating rate; 

¶ isothermal preparation protocols to reach specific decomposition state of the material for 

thermal properties characterisation. 

3.2. Experimental apparatus and data analysis tools 

3.2.1. TGA/DSC 

Measurements are performed with a METTLER TOLEDO TGA/DSC3+ device. It combines a conventional but 

very accurate thermo-gravimetric analyser with a differential scanning calorimetric sensor onto the 

weighing module in order to assess simultaneously the mass loss and the reaction enthalpies during the 

decomposition process. However, the accuracy of the DSC measurement with METTLER TOLEDO 

TGA/DSC3+ coupled device is lower than with conventional dedicated DSC devices ( ρπ Ϸ) but the 

measurement is directly correlated to the mass loss onto the full range of temperature up to ρρππ Јὅ. 

 

 

Figure 1 - METTLER TOLEDO TGA/DSC3+ device 
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3.2.2. Adethec 

Adethec is a toolbox developed at ONERA to analyse and model thermo-chemical reactions occurring in a 

decomposing material from TGA and DSC signals measured using the METTLER-TOLEDO TGA/DSC3+ 

device. Adethec is developed in Python using the Qt graphic library and consists of three stackable and 

movable sub-windows: a database detailing all experimental conditions, a plot zone ŀƴŘ ŀ ǇŀǊŀƳŜǘŜǊǎΩ 

selection zone (cf. Figure 2). The database is composed of the TGA and DSC experimental measurements. 

From a set of experiments selected by the user, four main functions are available: 

 

¶ A simple plot function that can plot the mass loss, relative mass loss, mass loss rate or the 

calorimetric signal. Smoothing functions and buoyancy compensation (if measured) can be 

performed; 

¶ A DSC analyser to integrate reaction enthalpies from the calorimetric signal, where minimum and 

maximum integration temperatures are specified by sliders. Different methods are available to 

evaluate the baseline calorimetric signal. 

¶ A TGA fitting function from a user-defined set of reactions. The user can define a set of ὲ solid species 

and ά reactions. Each species is defined by its initial mass fraction and each reaction is defined by 

one solid reactant Ὑ and one optional solid product ὖ. All remaining products are gases Ὃ and are 

assumed inert. The mass stoichiometric coefficient ’ defines the mass fraction of a solid reactant 

transformed into a solid product as described by the following equation: 

Ὑᴼ’ὖ ρ ’Ὃ 

 

Each reaction can be either oxidative (activated by the presence of ὕ) or not, and is modelled with 

Arrhenius kinetics model using a set of (ὃ, Ὁ, ὲ) parameters as: 

 

ὣ

ὸ
ὃȢÅØÐ

Ὁ

ὙὝ
Ȣὣ  

 

 where ὣ  is the mass fraction of the species Ὥ involved as reactant in the decomposing reaction Ὦ. From a 

set of thermally activated reactions, the total mass fraction rate of the species Ὥ is determined by: 

 

ὣ

ὸ

ὣ

ὸ
 ’

ὣ

ὸ
  

where the first term represents the contributions of reactions where Ὥ is a reactant and the second term 

represents the contributions where Ὥ is a product. The total mass loss άȾά  can be detailed as: 

ά

ά
ὣ 
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The set of ά parameters interacting with ὲ solid species is expressed as a set of differential equations 

solved in Adethec by a 2
nd

 order Runge-Kutta method. The set of Arrhenius parameters (ὃ, Ὁ, ὲ)j is 

optimised by a bounded quasi-Newton method in order to have the best fit between the model and the 

experimental results. 

 

 

Figure 2 - Screenshot of Adethec graphic user interface for TGA fitting of a carbon-epoxy composite 
laminate decomposition under air atmosphere using a 3-stage Arrhenius model (Resin pyrolysis into 

char > Char oxidation > Fibre oxidation) 

3.2.3. Fast TGA 

In order to check the validity of the model presented in the next section (§3.2.2) for high temperature 

ramps, experiments have been performed on the ONERA Fast-TGA apparatus (Figures 3-4). By this device, 

it is possible to heat small samples in inert environment (Helium, nitrogen or vacuum) up to 100°C/s and 

to measure the evolution of the mass loss as function of the temperature applied thanks to on the hang-

down design. This system provides the highest level of stability and the best limit of detection. The 

furnace is in graphite and uses Joule heating principle to apply the temperature on the coupon. The 

measure the temperature is achieved by a thermocouple positioned close to the sample (Figures 4). It is 

important to notice that due the heating ramp, the temperature in the sample could not be considered as 

homogeneous and 3D simulations are mandatory to compare the model proposed in the previous section 

with the experimental data obtained by this technic. 
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Figure 3 ς Fast ATG apparatus developed at Onera 

  

Figure 4 ς Fast ATG apparatus developed at Onera : description of the graphite furnace and the principle 
of the measure 

3.3. Experimental results analysis 

3.3.1. Under inert atmosphere 

Figure 5 shows relative mass loss (άȾά ) as a function of temperature resulting from thermo-gravimetric 

analyses under inert atmosphere (ὔ) at different heating rates (ςȟυ and ρπὑȾÍÉÎ ). The studied material 

is a carbon/epoxy laminate whose commercial name is T700GC/M21. Figure 6 shows results of normalized 

mass loss rate, named hereafter ὓὒὙ, and assessed using the following relation: 
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ὓὒὙ
ρ

ά
 
ά

Ὕ
 

where ά is the mass, ά  the initial mass and Ὕ the temperature. Each TGA experiment is repeated twice 

and exhibits a very satisfying reproducibility, except after ωππὑ where unexpected mass losses are 

measured, probably due to low oxidative gas flow during the experiments or to the release of ὕ  by the 

material itself at high temperature. Mass loss rates shows only one global reaction around Ὕ φυπ ὑ and 

transforming ςσϷ of the solid material into gaseous species. The ὓὒὙ plots point out one global reaction 

and confirm that the occurring reaction is very reproducible. 

 

 

Figure 5 - Relative mass loss reproducibility in ╝  atmosphere at ȟ and ╚Ⱦ□░▪ 
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Figure 6 - Mass Loss Rate reproducibility in ╝  atmosphere at ȟ and ╚Ⱦ□░▪ 

Figure 7 shows the results of heat flux signal (ὌὊ) during DSC analyses under ὔ  atmosphere at ςȟυ and 

ρπὑȾÍÉÎ. Duplicate measurements have been performed but are not plotted here. Integration of heat 

flux signals provides reaction energies occurring in a decomposing material using the following relation: 

ὗ
ρ

ά
ὌὊὝ ὌὊ Ὕ  ὨὝ 

where Ὕ is the lower temperature integration bound and Ὕ the higher temperature integration bound of 

the considered reaction. ὌὊ  represents the baseline heat flux signal (without any reaction), evaluated 

with a spline based on ὌὊ (dashed lines) between Ὕ and Ὕ. Figure 7 shows that one reaction energy can 

be identified by DSC analysis under inert atmosphere, associated to the pyrolysis reaction and with a 

relatively low value. The low signal shows a high uncertainty due to the signal noise of the DSC sensor. 

The reader can note that standard DSC sensors have better precisions than DSC sensors embedded in a 

TGA/DSC apparatus. Quality of DSC signals can be improved by a standardised method for coupon 

preparation (similar masses and shapes) in order to have better contact quality between the coupon and 

the thermocouple sensors within the crucible. In practice, high precision machining for CFRP is very hard 

to obtain on such millimetric disc-shaped samples. 

The average value of the pyrolysis reaction energy for the set of analyses is: 

ὗ ςȢω ρπὯὐȾὯὫ 

 
















































































































































































































































































































































